Stability Analysis of Takagi-sugeno Fuzzy Systems via Lmi: Methodologies Based on a New Fuzzy Lyapunov Function

نویسندگان

  • Leonardo Amaral Mozelli
  • Reinaldo Martinez Palhares
چکیده

Análise da estabilidade de sistemas fuzzy de Takagi-Sugeno via LMI: Metodologia baseda numa nova função de Lyapunov fuzzy A análise de estabilidade de sistemas fuzzy TS pode ser aprimorada com o uso de funções de Lyapunov fuzzy, uma vez que as mesmas são parametrizadas por funções de pertinência e podem definir melhor a ca-racteŕıstica variante no tempo de tais sistemas através do uso da informação relacionada à primeira derivada temporal das funções de pertinência. Neste trabalho uma função de Lyapunov fuzzy aperfeiçoada é usada com o intuito de se desenvolver condições de estabilidade que avaliam também a segunda derivada temporal das funções de pertinência, aprimorando a caracterização do aspecto variante no tempo de sistemas TS. Novos testes no formato de LMIs são desenvolvidos usando diferentes estratégias para incorporar tais derivadas e empregando algumas ferramentas numéricas que desacoplam as matrizes do

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model

This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...

متن کامل

Condições Lmis Alternativas Para Sistemas Takagi-sugeno via Função De Lyapunov Fuzzy

Alternative LMI Conditions for Takagi-Sugeno Systems Via Fuzzy Lyapunov Function This paper deals with the stability analysis and control design for continuous Takagi-Sugeno fuzzy systems in a linear matrix inequality (LMI) framework. New LMI stability conditions are obtained by applying a relaxation strategy in a recently proposed fuzzy Lyapunov function. In these new LMI stability conditions,...

متن کامل

Design of robust fuzzy Sliding-Mode control for a class of the Takagi-Sugeno uncertain fuzzy systems using scalar Sign function

This article presents a fuzzy sliding-mode control scheme for a class of Takagi-Sugeno (T-S) fuzzy which are subject to norm-bounded uncertainties in each subsystem. The proposed stabilization method can be adopted to explore T-S uncertain fuzzy systems (TSUFS) with various local control inputs. Firstly, a new design is proposed to transform TSUFS into sliding-mode dynamic systems.In addi...

متن کامل

Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems

In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...

متن کامل

LMI-based tracking control for Takagi-Sugeno fuzzy model

This paper deals with the problem of tracking control for Takagi-Sugeno fuzzy model. An LMI (Linear Matrix Inequality) formulation is suggested to make possible the convergence of the state vector of the continuous-time system to a desired one using a new approach, called MultiQuadratic Fuzzy Lyapunov (MQFL). A fourth order unstable nonlinear system is studied to illustrate the efficiency of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012